martes, 16 de abril de 2013

Introducción al modelado


Características de los lenguajes de modelado.

La herramienta UML debe apoyar todos los diagramas de los nueve que componen UML. La herramienta debe soportar la diagramación de casos de uso, permitir definir la visión estática con diagramas de clases y diagramas de objeto, permitir la definición de la visión dinámica, tales como los diagramas de secuencia, la actividad, de los estados, de colaboración y el despliegue de componentes que forman el sistema.

Lo fundamental de una herramienta UML es la capacidad de diagramación, y los diferentes tipos de diagramas que soporta la herramienta. Sus esquemas de apoyo de diseño, documentación, construcción e implantación de sistema. Así mismo, su flexibilidad para admitir cambios no previstos durante el diseño o el rediseño. En resumen, la herramienta ideal, es aquella que admite diseño desde inicio a fin,  diseño inverso (o rediseño) y diseño  vise-versa, con esquemas amplios para documentar detalladamente los procesos.


Diagramas, Símbolos y Notación
Un diagrama es una representación gráfica de una colección de elementos de modelado, a menudo dibujada como un grafo conexo de arcos (relaciones) y vértices (otros elementos del modelo). Un diagrama no es un elemento semántico, un diagrama muestra representaciones de elementos semánticos del modelo, pero su significado no se ve afectado por la forma en que son representados. Un diagrama está contenido dentro de un paquete.
La mayoría de los diagramas de UML y algunos símbolos complejos son grafos que contienen formas conectadas por rutas. La información está sobre todo en la topología, no en el tamaño o la colocación de los símbolos (hay algunas excepciones como el diagrama de secuencia con un eje métrico de tiempo). Hay tres clases importantes de relaciones visuales: conexión (generalmente de líneas a formas de dos dimensiones), contención (de símbolos por formas cerradas de dos dimensiones), y adhesión visual (un símbolo que está "cerca" de otro en un diagrama). Estas relaciones geométricas se reasignan a conexiones entre nodos en un gráfico en la forma analizada de la notación.

-Herramientas CASE: Conceptos fundamentales sobre herramienas CASE y algunas herramientas CASE

De acuerdo con Kendall y Kendall la ingeniería de sistemas asistida por ordenador es la aplicación de tecnología informática a las actividades, las técnicas y las metodologías propias de desarrollo, su objetivo es acelerar el proceso para el que han sido diseñadas, en el caso de CASE para automatizar o apoyar una o mas fases del ciclo de vida del desarrollo de sistemas.
Cuando se hace la planificación de la base de datos, la primera etapa del ciclo de vida de las aplicaciones de bases de datos, también se puede escoger una herramienta CASE (Computer-Aided Software Engineering) que permita llevar a cabo el resto de tareas del modo más eficiente y efectivo posible. Una herramienta CASE suele incluir:
  • Un diccionario de datos para almacenar información sobre los datos de la aplicación de bases de datos.
  • Herramientas de diseño para dar apoyo al análisis de datos.
  • Herramientas que permitan desarrollar el modelo de datos corporativo, así como los esquemas conceptual y lógico.
  • Herramientas para desarrollar los prototipos de las aplicaciones.
El uso de las herramientas CASE puede mejorar la productividad en el desarrollo de una aplicación de bases de datos.



lunes, 15 de abril de 2013

Metodologías empleadas

La metodología de desarrollo de software orientada a objetos es cada día más usada, pues permite desarrollar software fácilmente extensible y reusable. Esto último es sólo posible si los desarrolladores conocen muy bien los fundamentos que esté basada esta metodología. Por eso, este curso revisa los conceptos más importantes que se encuentran en las distintas etapas del desarrollo de software orientado a objetos.

-Proceso unificado de desarrollo (UP del inglés Unified process)


Es una metodología de desarrollo de software que está basado en componentes e interfaces bien definidas, y junto con el Lenguaje Unificado de Modelado (UML), constituye la metodología estándar más utilizada para el análisis, implementación y documentación de sistemas orientados a objetos.
Es un proceso que puede especializarse para una gran variedad de sistemas de software, en diferentes áreas de aplicación, diferentes tipos de organizaciones, diferentes niveles de aptitud y diferentes tamaños de proyecto.
RUP no es un sistema con pasos firmemente establecidos, sino un conjunto de metodologías adaptables al contexto y necesidades de cada organización.

-Fases  de desarrollo. 

En la ingeniería del software el término fases de desarrollo expresa cómo ha progresado el desarrollo de un software y cuánto desarrollo puede requerir. 

Cada versión importante de un producto pasa generalmente a través de una etapa en la que se agregan las nuevas características (etapa alfa), después una etapa donde se eliminan errores activamente (etapa beta), y finalmente una etapa en donde se han quitado todos los bugs importantes (etapa estable). Las etapas intermedias pueden también ser reconocidas. 

Las etapas se pueden anunciar y regular formalmente por los desarrolladores del producto, pero los términos se utilizan a veces de manera informal para describir el estado de un producto. Normalmente muchas compañías usan nombres en clave para las versiones antes del lanzamiento de un producto, aunque el producto y las características reales son raramente secretas.

Estándares en el proceso de desarrollo de software


ISO Es el organismo encargado de promover el desarrollo de normas internacionales de fabricación, comercio y comunicación para todas las ramas industriales a excepción de la eléctrica y la electrónica. Su función principal es la de buscar la estandarización de normas de productos y seguridad para las empresas u organizaciones a nivel internacional. Estándares ISO existentes: ISO 9001, 9000–3, 9004–2, ISO/IEC 12207, ISO/IEC 15504 (SPICE) Algunos estándares existentes:


Estándares para datos
Estándares de codificación
Estándares estructurales
Estándares de documentación
Estándares de proceso software
Estándares para otras actividades

Ejemplos de estándares en ingeniería del software

IEEE Standards Collection Software Engineering – 1998 Edition
IEEE Std. 610.12-1990, Glossary of Software Engineering Terminology
IEEE Std. 829-1983, Standard for Software Test Documentation
IEEE Std. 830-1993, Recommended Practice for Software Requirements Specifications.
IEEE Std. 990-1987, Recommended Practice for Ada as a Program Design Language.
IEEE Std. 1045-1992, Standard for Software Productivity Metrics
IEEE Std. 1062-1987, Recommended Practice for Software Acquisition
IEEE Std. 1063- 1987, Standard for Software User Documentation
IEEE Std. 1219-1992, Standard for Software Maintenance

Componentes, tipos, caracteristicas y reusabilidad de componentes


Tipos de componentes y caraterísticas

  • Componentes de despliegue o distribución (Deployment)
Estos componentes se usan para formar un sistema ejecutable. Un ejemplo de tal componente es la librería de enlace dinámico y los archivos ejecutables. Otros ejemplos son los componentes COM+, Enterprise Java Beans, componentes CORBA y objetos de base de datos.

  • Componentes de Producto de Trabajo
Estos componentes son parte del proceso de desarrollo que es esencial para el sistema. Algunos ejemplos de componentes de producto de trabajo son los archivos fuente, archivos de datos y tablas. Ellos son los archivos fuente y archivos de datos que se usan para crear los componentes de distribución como AgenteAnalizado.Java y AnalizadorDatos.txt.

  • Componentes de Ejecución
Estos componentes son el resultado de un sistema que se está ejecutando. Cuando un DLL es instanciado como un componente COM+, es un ejemplo de un componente de ejecución.


Características

  • La característica fundamental de un componente es la habilidad de definir interfaces.
  • Es una unidad ejecutable que puede ser implantada independientemente.
  • Puede ser sujeto de composición por terceras partes, es decir, una compañía o un desarrollador puede llegar y tomar el componente y agregarlo a lo que esté haciendo, o sea haría una composición de componentes.
  • Un componente no tiene estado.
  • Se puede tomar a los componentes de software como una analogía a los componentes electrónicos.

Reusabilidad de componentes.

Una vez que una clase ha sido escrita, creada y depurada, se puede distribuir a otros programadores para utilizar en sus propios programas. Esta propiedad se llama reusabilidad  o reutilización. Su concepto es similar a las funciones incluidas en las bibliotecas de funciones de un lenguaje procedimental como C que se pueden incorporar en diferentes programas. En C++, el concepto de herencia proporciona una extensión o ampliación al concepto de reusabilidad.

Un programador puede considerar una clase existente y sin modificarla, añadir competencias y propiedades adicionales a ella. Esto se consigue derivando una nueva clase de una ya existente. La nueva clase  heredará  las características de la clase  antigua, pero es libre de añadir nuevas características propias.

La facilidad de reutilizar o rehusar el software existente es uno de los grandes beneficios de la POO: muchas empresas consiguen con  la reutilización de clase en nuevos proyectos la reducción de los costes de inversión en sus presupuestos de programación. Las propiedades comunes de varias clases sólo necesitan ser implementadas una vez y sólo necesitan modificarse una vez si es necesario.

Caracteristicas


Las características orientadas a objetos se basan en organizar el software como una colección de objetos discretos que incorporan tanto estructuras de datos como comportamiento. Esto contrasta con la programación convencional, en la que las estructuras de datos y el comportamiento estaban escasamente relacionadas.
Las características principales del enfoque orientado a objetos son:

Identidad
Los datos se organizan en entidades discretas y distinguibles llamadas objetos. Estos objetos pueden ser concretos o abstractos, pero cada objeto tiene su propia identidad.

Clasificación
Los objetos que tengan los mismos atributos y comportamiento se agrupan en clases. Una clase es una abstracción que describe propiedades (atributos y comportamiento) relevantes para una aplicación determinada, ignorando el resto. La elección de clases es arbitraria, y depende del dominio del problema.

Polimorfismo
El polimorfismo permite que una misma operación pueda llevarse a cabo de forma diferente en clases diferentes. La implementación específica de una operación determinada en una clase determinada se denomina método.

Herencia
El concepto de herencia se refiere a la compartición de atributos y operaciones basada en una relación jerárquica entre varias clases. Una clase puede definirse de forma general y luego refinarse en sucesivas subclases. Cada clase hereda todas las propiedades (atributos y operaciones) de su superclase y añade sus propiedades particulares.

Fundamentos del Enfoque orientado a Objetos

Fundamentos del Enfoque orientado a Objetos. 

               El Enfoque Orientado a Objeto se basa en cuatro principios que constituyen la base de todo desarrollo orientado a objetos. Estos principios son: la Abstracción, el Encapsulamiento, la Modularidad y la Herencia.concatenación de cadenas de caracteres.


Fundamento 1: Abstracción

             Es el principio de ignorar aquellos aspectos de un fenómeno observado que no son relevantes, con el objetivo de concentrarse en aquellos que si lo son.Una abstracción denota las características esenciales de un objeto (datos y operaciones), que lo distingue de otras clases de objetos. Decidir el conjunto correcto de abstracciones de un determinado dominio, es el problema central del diseño orientado a objetos.
       Los mecanismos de abstracción son usados en el EOO para extraer y definir del medio a modelar, sus características y su comportamiento. Dentro del EOO son muy usados mecanismos de abstracción: la Generalización, la Agregación y la clasificación.

  • La generalización es el mecanismo de abstracción mediante el cual un conjunto de clases de objetos son agrupados en una clase de nivel superior (Superclase), donde las semejanzas de las clases constituyentes (Subclases) son enfatizadas, y las diferencias entre ellas son ignoradas. En consecuencia, a través de la generalización, la superclase almacena datos generales de las subclases, y las subclases almacenan sólo datos particulares.La especialización es lo contrario de la generalización. Por ejemplo; La clase Médico es una especialización de la clase Persona, y a su vez, la clase Pediatra es una especialización de la superclase Médico. 
  • La agregación es el mecanismo de abstracción por el cual una clase de objeto es definida a partir de sus partes (otras clases de objetos). Mediante agregación se puede definir por ejemplo un computador, por descomponerse en: la CPU, la ULA, la memoria y los dispositivos periféricos. El contrario de agregación es la descomposición. 
  • La clasificación consiste en la definición de una clase a partir de un conjunto de objetos que tienen un comportamiento similar. La ejemplificación es lo contrario a la clasificación, y corresponde a la instanciación de una clase, usando el ejemplo de un objeto en particular.
  • Público (+):  Atributos o Métodos que son accesibles fuera de la clase. Pueden ser llamados por cualquier clase, aun si no está relacionada con ella.
  • Privado (-):  Atributos o Métodos que solo son accesibles dentro de la implementación de la clase.
  • Protegido (#):  Atributos o Métodos que son accesibles para la propia clase y sus clases hijas (subclases).

Fundamento 2: Encapsulamiento 

          Es la propiedad del EOO que permite ocultar al mundo exterior la representación interna del objeto. Esto quiere decir que el objeto puede ser utilizado, pero los datos esenciales del mismo no son conocidos fuera de él. La idea central del encapsulamiento es esconder los detalles y mostrar lo relevante. Permite el ocultamiento de la información separando el aspecto correspondiente a la especificación de la implementación; de esta forma, distingue el "qué hacer" del "cómo hacer". La especificación es visible al usuario, mientras que la implementación se le oculta. El encapsulamiento en un sistema orientado a objeto se representa en cada clase u objeto, definiendo sus atributos y métodos con los siguientes modos de acceso:  
              Los atributos y los métodos que son públicos constituyen la interfaz de la clase, es decir, lo que el mundo exterior conoce de la misma.Normalmente lo usual es que se oculten los atributos de la clase y solo sean visibles los métodos, incluyendo entonces algunos de consulta para ver los valores de los atributos. El método constructor (Nuevo, New) siempre es Público.

Fundamento 3: Modularidad

Es la propiedad que permite tener independencia entre las diferentes partes de un sistema. La modularidad consiste en dividir un programa en módulos o partes, que pueden ser compilados separadamente, pero que tienen conexiones con otros módulos. En un mismo módulo se suele colocar clases y objetos que guarden una estrecha relación. El sentido de modularidad está muy relacionado con el ocultamiento de información.

Fundamento 4: Herencia 

Es el proceso mediante el cual un objeto de una clase adquiere propiedades definidas en otra clase que lo preceda en una jerarquía de clasificaciones. Permite la definición de un nuevo objeto a partir de otros, agregando las diferencias entre ellos (Programación Diferencial), evitando repetición de código y permitiendo la reusabilidad.
Las clases heredan los datos y métodos de la superclase. Un método heredado puede ser sustituido por uno propio si ambos tienen el mismo nombre. La herencia puede ser simple (cada clase tiene sólo una superclase) o múltiple (cada clase puede tener asociada varias superclases). La clase Docente y la clase Estudiante heredan las propiedades de la clase Persona (superclase, herencia simple). La clase Preparador (subclase) hereda propiedades de la clase Docente y de la clase Estudiante (herencia múltiple).

Fundamento 5: Polimorfismo

             Es una propiedad del EOO que permite que un método tenga múltiples implementaciones, que se seleccionan en base al tipo objeto indicado al solicitar la ejecución del método. El polimorfismo operacional o Sobrecarga operacional permite aplicar operaciones con igual nombre a diferentes clases o están relacionados en términos de inclusión. En este tipo de polimorfismo, los métodos son interpretados en el contexto del objeto particular, ya que los métodos con nombres comunes son implementados de diferente manera dependiendo de cada clase.
Por ejemplo, el área de un cuadrado, rectángulo y círculo, son calculados de manera distinta; sin embargo, en sus clases respectivas puede existir la implementación del área bajo el nombre común Área. En la práctica y dependiendo del objeto que llame al método, se usará el código correspondiente.
Ejemplos:   
Superclase: Clase Animal 
Subclases:   Clases Mamífero, Ave, Pez.
           Se puede definir un método Comer en cada subclase, cuya implementación cambia de acuerdo a la clase invocada, sin embargo el nombre del método es el mismo.
                Mamifero.Comer  ≠  Ave.Comer  ≠ Pez.Comer
             Otro ejemplo de polimorfismo es el operador +. Este operador tiene dos funciones diferentes de acuerdo al tipo de dato de los operandos a los que se aplica. Si los dos elementos son numéricos, el operador + significa suma algebraica de los mismos, en cambio si por lo menos uno de los operandos es un String o Carácter, el operador es la concatenación de cadenas de caracteres.